

CS/IT Honours
Final Paper 2019

Title: Salsational: Implementation of an API for the
Computerisation of Dance Choreography

Author: Micara Shashi Marajh

Project Abbreviation:

DeDance

Supervisor(s):

Professor Maria Keet

Category Min Max Chosen
Requirement Analysis and Design 0 20 20
Theoretical Analysis 0 25 0
Experiment Design and Execution 0 20 0
System Development and Implementation 0 20 15
Results, Findings and Conclusion 10 20 15
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80 80

DEPARTMENT OF COMPUTER SCIENCE

 Salsational: Implementation of an API for the Computerization of
Dance Choreography

Micara Shashi Marajh
mrjmic001@myuct.ac.za
University of Cape Town

Cape Town, Western Cape

ABSTRACT
Dance is considered to be an intangible cultural heritage, therefore
development of tools to aid instructors in teaching choreography is
a necessary and important research topic. Dance notations exist for
the purpose of recording dance movement through symbols.
However, these notations have been described as too complicated
for the novice dancer to understand and model. Through ongoing
research, it was noted that little work has been done to transform
paper-based dance notation into software. Thus, we have
recognised that there is significant demand for the creation of a
software tool to computerise dance movement. In particular, no
software tool has been developed for the purpose computerizing
Salsa dance.
 In this paper, we address these shortfalls by developing a tool to
computerise Salsa dance notation in the form of an API. The API
provides developers with a platform to describe dance moves and
create a dance sequence based on these moves. The API design is
abstract and extensible as it allows implementation of various
dance styles catering to the user’s specific needs. The main goal is
to aid developers in computerising various dance styles in attempt
to revolutionise the way dance is taught. Focus was based on
assessing the extensiveness, abstraction, learnability and re-
usability of the software tool in order to be implemented by other
developers. After conducting software tests, we concluded that our
API successfully computerized a Salsa dance notation. Various
dance styles were also tested with the system and found that our
system can computerize other dance styles provided they are
performed on a multiple of 4-beat counts. Software quality testing
with developers proved our system to be understandable, learnable
and re-usable.

KEYWORDS
Application Programming Interface, Notation, Extensibility,
Usability, Salsa;

1. INTRODUCTION AND BACKGROUND
Dance is the most elementary of the art forms [7], that involves
expressions through bodily actions. Alike, it is a great therapeutic
activity and evolved as a form of medicine for psychological and
physical illnesses [1]. Consequently, the preservation of dance is of
the utmost importance. Salsa is believed to be one of the most
practiced and most popular dances of the Latin dance styles in the
world today. Since the early 1990’s, Salsa has experienced added
attention from American audiences who have put a large amount of
money into learning Salsa dance [4].

The Evolution Dance Company (EDC) is an established Salsa
Dance company in Cape Town which strives to unite and empower
diversity through dance. Our client, Angus Prince, aims to provide
a sociable and professional environment for students to captivate
themselves in the art of dance. Their primary focus is on the
development of dance, with the vision of making Salsa accessible
to all the people of Cape Town. Such an establishment gives new
impulsion to dance. In the interest of fulfilling this vision, the
current methods of teaching dance need to be revised.
Dance now integrates technological aspects in teaching,
performance and choreography. Due to rapid technological
advancements, it is increasingly important for novice dancers to
keep up their technological expertise and advances used for
creating, producing and documenting their dance attempts. Remote
education has also become an increasingly popular method of
teaching dance [18]. These technological advancements will give
students the tools for developing their own environment of
exploring movements and reflecting upon them. By bringing in
creative practical tools, it allows students and dance teachers to
enrich their experiences using a technological platform for dance.
From our external client’s knowledge, the dance community relies
heavily on videos to record dance moves which is problematic
because videos lack formal clarification of moves into clear steps
and positions which proves this method to be inefficient.
Our project goal is to develop a user-friendly, software tool, in the
form of a desktop application, for teachers to plan lessons that will
provide a revolutionary approach to the way Salsa dance is taught.
This tool will allow novice dancers to develop their skills by
enabling them to analyse specific dance moves and create dance
sequences. Developing a tool to formalise dance steps and animate
a Salsa dance form, proves challenging as there are currently
limited resources available [26]. The existing paper-based notations
have proven to be too complex for students to record and model
dance choreography [8]. As these are paper-based systems, there
has not been much uptake on computerising these notations.
We intend on leveraging an existing notation system to generate a
more representative notation for dance. Our solution to the
aforementioned problems is to create an Application Programming
Interface (API) to computerise dance notation. Our API will
provide a way to support several dance styles in a well-defined
manner. This approach allows for re-usability as developers can use
the underlying code structure created and modify it according to
their needs. Developers will interface with our system through
plugins, making it extensible in it is design.
Through extensive research, we have structured our study around a
few main research questions. These are crucial to examine the
extensibility, usability, level of abstraction and learnability of the
API. These research questions are as follows:

1. Does the API allow for extensibility with other dance
styles relating to Salsa?

2. Is the API designed well enough to allow for easy
learning and understanding?

3. Does the API’s abstraction level serve the purpose of re-
usability?

4. What is the effort needed to interpret the API based on
the class names and attributes?

The development of APIs is becoming a larger part of programming
[22]. The use of APIs is advantageous as it improves programmers’
productivity by enabling the reuse of more code instead of writing
it from scratch. Another motivation for our decision is that an API
provides a larger scope. With an API, an application can distribute
information and services to other developers which can create
custom user experiences. We hope we will assist dance students in
enhancing their learning experience through the use of our tool.
The remainder of this paper is structured as follows: related work
pertaining to the project, the Object- Orientated Design and
Implementation of the API and finally, our Results and Conclusions
after system and software quality testing.

2. RELATED WORK

2.1 Dance Notation Systems
Dance notations are used to record dance choreography and enable
them to be reproduced by dancers and choreographers. Dance
notation has a symbolic representation that is similar to music.
Various notation systems have been attempted for analysing human
movement. However, human movement is complex to describe,
therefore movement notation systems are inherently complicated
and difficult to master. Benesh Movement Notation (BMN) is one
of the oldest notation systems for analysing and documenting
human movement by using symbols [5]. BMN is a 2D notation that
records human movement in 3D of space which has been
successfully implemented in the production of scores for a wide
range of dances, excluding Salsa [19]. However, it lacked
possibilities of complex movements inferences for dance such as
turns and foot movement. Labanotation is a general body motion
notation that is commonly used as it does not depend on any
specific dance [5]. It has been described as complicated and only
easily understood by those who study it [2]. It was also proven
difficult for dance novices to understand since instruction manuals
regarding it is encoding patterns are a countless number of pages in
length [2]. In spite of this, it is still the most popular dance notation
used today [1]. This dance notation is used for human movement
but has not been optimised for a partnered dance. These notations
focus on the more classical dance styles and does not allows users
to experiment with different sequences and clearly see the
movement of different parts of the body.
Renesse and Ecke [6] created a "Space of Salsa Dance" notation
using mathematical equations in the form of a text-based diagram.
This method is limited to arm movement and lacks notation for feet
movement. In 2002, the "Salsa Dictionary" was created [23] as a
way to learn Salsa dance patterns displayed in a table-based
notation. To our knowledge, this method is not defined in any
structured serialisation. A move is defined for a pair: the leader and
follower using symbols to describe each move.	There	is	ambiguity	
in	 the	 representation	 of	 the	 symbols	 used	 to	 describe	 the	
actions	 in	 the	Salsa	Dictionary.	However, in the past 17 years,
there has been no uptake to the use of this notation. The

aforementioned notations are paper-based notations, which can be
easily misinterpreted [8] and difficult to conceptualise [8].

Figure 1: Salsa Dictionary notation consisting of elements and
symbols [18].

2.2 Computerising Notation
While BMN provides a theoretical approach for modelling dance,
it is not part of regular language of all dance instructors. Web-based
Movement Library (WML) was proposed to provide an interface
for searching recordings and collect data on how the dance experts
characterize various parts of the recordings pertaining to their
movement positions [15]. Specifically, users can search the
recordings by dance genre, and search by using keywords that are
included as data or annotations of the recordings. The keywords
refer to various areas of movement. XML (eXtensible Markup
Language) has been designed to describe data. Files will be
searchable, software independent and be able to share and
interchange data with several systems. HumanML [12], an XML
specification, attempts to codify human thought, emotion, gestures,
attitude, intent and many other characteristics of the human
condition. Nevertheless, it is complex for quick notation and
unsuitable in terms of limited gesture description for the purposes
of dance notation.
In 2006, Nakamura and Hachimura discussed an XML
representation of Labanotation, called LabanXML [19]. This
language allows a user to input and edit movement of dance in the
human body as well as exhibit animation of a human body model
in 3D graphics. This research was improved upon by Hatol et al
[12] using MovementXML. Its purpose is to represent the
semantics of Labanotation in XML. MovementXML is a useful
XML preliminary plan to encode dance movement.
MovementXML allows smaller movements to be joined together to
form a higher- level movement. However, these have not been
widely adopted to describe gesture for the Salsa dance style.
eXtensible Dance Scripting Notation (XDSN) is a type of dance
notation which has a handwritten and machine-readable format [9].
It is structured in a way to encourage various approaches on how
the notation should written and implemented. The XDSN system
expands on existing notation systems [9] using word, abstract
symbol and notation markings in numbers. To modify the
handwritten notation to the machine-readable format, it has to be
grouped into defined elements and values. Only the values are used
in the handwritten score, so the elements can be derived and
appended during conversion into the machine-readable format [9].
However, there has been no uptake in attempt to encode this
notation. Even though there exist several software notations,
attempts to convert notation into machine readable format proved
complicated. Problems included abstract symbol transformation

[17], cross platform operability [18] and complexity of software
development [2].

3. DESIGN
Our system was developed using the Iterative Waterfall Model
approach [16]. The step-by-step nature of this approach allows the
project to contain a more detailed, robust scope and design structure
to allow for more extensive planning and documentation. This
model separates the development process into phases which can be
repeated several times [16]. A detailed description of the
development processes carried out during this project is presented
in Table 1. Focus was spent on the Implementation and evaluation
phases as changes were made after testing the system.

Table 1: Iterative Waterfall Development Phases [16]

Development Phase Description
Planning and Requirements Project planning

specification and software
requirements established.

Design Technical requirements
gathered and
programming logic
established.

Implementation Coding process of the
project

Testing Software testing and
system quality testing
carried out

Evaluation Examine feedback from
testing procedures

3.1 System Architecture
In this section we provide a high-level architecture of the API
system with the purpose of visualising the interaction between the
components of the system. The project comprises of a notation
graphics pipeline component. The notation pipeline defines and
analyses the dance notation to formalise it in a way that can be
accurately computerised. The notation system will be governed by
an underlying ruleset which specifies sequences that can and cannot
be performed in succession in the form of a grammar. A parser will
be plugged into our system to determine the legality of a dance
sequence as seen in Figure 2 below. Once a dance sequence is
validated, it is rendered in the graphics pipeline. The system is
comprised of abstract classes and interfaces to provide interaction
between components. System plug-ins were created to allow
developers to extend our application and easily add new features.
These components were split to ensure modularity in the design.
The API plays a significant role in integrating the notation pipeline
and graphics pipeline components in order to create the final
product. It serves as a messenger that processes request and ensures
seamless functioning of the systems.

Figure 2: API System Architecture

3.2 Requirements Analysis
To ensure this project meets the requirements of our client, it was
necessary to gather information relating to the final product
expectations. This assisted us in ensuring that the design of our
system correlated with the needs of client during the iterations of
the design cycle.
The first step was to meet with our client from Evolution Dance
Studio and determine his expected requirements for the system.
During the first meeting, he provided us with a Salsa Dance
syllabus which consisted of the various basic moves in Salsa. The
syllabus covered the most important introduction to Salsa steps as
well as the preferred nomenclature for each. This syllabus will be
used in the development of the notation definition component,
which will play an important role in the design of the API. We had
to ensure we treat the notation with meticulous attention to detail
as it provided the basis of our system. The second meeting with our
client involved acquiring his expert knowledge on our naming
conventions of the moves and constraints associated with moves.
The third meetings took place to communicate our progress and
ensure that the approach taken to computerize the dance made
logical sense to our expert. In total we had 4 meetings with the
client and outcomes of each meeting was documented to be
referenced throughout the project. The knowledge gained from the
expert’s requirements was used to create the design of our final
system as shown in Appendix A, Figure 3.
The requirements analysis focuses on the core tasks that the system
should perform in order create the final product for our client.
Below is a list of the main components of the system:

1. Define dance elements which are terms used to describe
each step in the dance.

2. A dance line should be created consisting of the defined
elements. Each line describes the main positions of
dancers depending on the dance style.

3. A dance move consisting of all lines and the elements
associated with each line.

4. Create a dance sequence comprising of a list of moves
5. System must provide plug-in support for developers
6. The system should be able to support the implementation

of various dance styles.

3.2.1 Stakeholders
Considering this is a software engineering project, our next task
was to identify and analyse the people involved that are impacted

by the quality of our API design. As an API designer, it is crucial
to understand the needs of the stakeholders in order to ensure
success of the project. For the scope of this project, we consider the
following stakeholders: API users are the programmers who use
will utilize our API to write their programs, therefore our API need
to be suited to our target audience [25]. End users of the final
product are also affected by our API, although they are affected
indirectly.

3.2.2 Programming Language Requirements
In this section we will discuss the framework, libraries,
development kit and languages that relate to the construction of the
API. Our API is structured using the principles of object-oriented
design and dynamically linked objects. Dynamically linked objects
refer to the system plugins. The core architecture maintains a set of
classes that it uses in it is user-interface. We have created a simple
design for all classes in order to have a structured core that is easily
understood by those that are extending it. This allows for portability
and added functionality to be implemented within the plug-ins.
Language requirements play an integral role in the implementation
of the project. Java was selected as the language of choice due to
its robustness, ease of use and good cross-hardware-platform
portability [3]. The ability to run our program on many systems is
crucial and Java succeeds in doing so. We adopted the most current
software development practices in object-oriented programming.
Apache NetBeans 11.0 IDE was the framework of choice as it has
dynamic language support and is an extensible platform. JDK 12
was used as our software development platform. Language binding
was also used by the API. Language binding allows a library
written in one language to be used when developing in another
language. Considering that our graphics component was created in
OpenGL in C++, we required language binding in order to execute
the dance animations. LWJGL is a Java library that enables cross
platform access to APIs.

3.3 Software Design Considerations
The API design must be structured in a way that it creates a large
impact on at least one of our stakeholders to measure success.
Below we identify the potential challenges faced when deciding on
the design of our API:
1.Finding descriptive, non-ambiguous names for the API features
to ensure that programmers understand what each class does.
2.Discovering relations between API classes require significant
effort. A simple design is beneficial when you are unaware of the
level of experience of each programmer.
3.Flexibility can have both a favourable and unfavourable impact
on the API design: experienced programmers can take advantage
of it, but it may confuse the novice programmers.
4. Complexity of the integration of both the notation and graphics
pipeline
5. Modularity must be ensured in order to improve maintainability.
Components will be tested rigorously before being integrated with
the final system.
The two most important qualities of an API are it is usability and it
is capabilities [21].

3.4 Algorithms and Data Structures
3.4.1 API Development
The software design is the most crucial consideration in developing
the API as we need to ensure that it will support various dance
styles as stated in the requirements analysis. Thorough research was
performed in Section 2 to identify which paper-based notation to
computerize that was most representative of all dance styles. This
is to ensure that we eliminate current problems faced by the dance
community making this project unique in its execution. The basis
of our design follows the structure of the Salsa Dictionary [22]. To
compensate for the ambiguous nature of the notation, we will adjust
the notation, but we will still preserve it is fundamental principles.
The Salsa Dictionary provides a platform to for beginners to learn
Salsa On 1 and Salsa on 2 moves by breaking them down into basic
elements and lines that are always used when creating a Salsa dance
move. These elements and lines are also present in several other
dance styles allowing us to create a generalized dance notation
structure. In order to capture the various Salsa steps, the concepts
of “Salsa Lines” and “Salsa Elements” are described in the
Dictionary for a pair of dancers. The five Salsa Lines describes the
orientation of the main components pertaining to a specific dance
style. For Salsa, these are Handholds, Direction, Leader, Follower
and Common Action as seen in Figure 1. The four Salsa elements
describe the step performed by the dancer unique to each line.
Elements are made up of Handhold, Direction, Position and
Actions pertaining to the pair of dancers.
The Handhold line indicates the specific handhold position for the
pair of dancers during each bar. A bar consists of 4 beats. The
Direction line shows where the dancers are facing in relation to the
line of dance. The Leader line indicates the position and actions
performed solely by the man, independent of the common actions
performed by the pair. Common Action line indicates actions
performed by both dancers. The Follower line is used to indicate
actions performed by a lady following the man’s lead. The system
is designed in a way that allows developers to define their own
symbolic representation of an element since this differs for each
dance as shown in the Element class in Figure 4. The element
symbol is of type string which allows developers to define a symbol
in any way they please as all dance styles will require different
symbol representations. Therefore the system can support the
addition of an arbitrary dance element names without forcing the
client to adhere to the element requirements of Salsa. These
elements are denoted as symbols that describe the movement of
each line as shown in Figure 1. The complete matrix represents a
Salsa dance move.
The Element class stores a unique name and symbol for a step. The
Line class defines each row in the Salsa matrix in order to maintain
complete control over a dance step. The Line class creates an array
populated with Element objects associated with that particular Line
illustrated in the class diagram in Figure 4. A move comprises of
all elements stored in the Line class. An Array list data structure
was chosen to store a move as it holds a dynamically sized
collection of elements since there is no fixed size of elements
shown in Figure 4. The API is being created with other dance styles
in mind, so it is imperative

Figure 4: API Class Diagram

that the data structure chosen can support a large number of
elements.
An important concept in dance is the time progression for each step.
Every dance style is defined by the number of beats. Salsa is
comprised of two bars, where each bar is made up of 4 beats. In
order to factor in the time progression for dance, the first symbol
entered as an element will indicate a step for the first 4 beats and
the second for the latter 4 beats etc, separated by a vertical line as
shown in Figure 1. This allows for extensibility as several dance
styles relating to Salsa. Bachata, Kizomba and Cha-Cha-Cha are
related dances performed on a 4-beat count or multiples of 4 beats.
There are a number of constraints that restrict the order in which
certain moves are performed. Based on the constraints defined by
our expert, the parser component, developed by Alka Baijnath, was
responsible for verifying whether moves can be performed in the
order it is inputted to ensure accuracy in the system functions.

3.4.2 Plugin Development
In order for third party developers to extend our application, a
plugin software component was created in order to enable
customisation suited to the developer’s needs. When a plugin is
added to the system, it looks through the classes and interfaces to
determine what functions are provided and required by the
component, and how it can be connected to the system. Our API
provides services for the plugin to use in order to exchange data.
The plugin depends solely on our host application and cannot work
on it is own. A plugin interface was created in order for the host
application to load the plugin.
The host application calls a reference to it itself to allow the plugin
to record call-backs which then extends the operations of the host
application. The host application depends only on the plugin
interface. The host application will use the Java class loader that
loaded the application, to load the plugin class. In order for this to
occur, the plugin must be provided in the Java class path when
initiating the host application. The Class Diagram in Figure 5
demonstrates an example of Plugin System operations for the Line

class. The plugin implementation for the rest of the system is not
shown.

Figure 5: Plugin System overview for Line Plugin

3.5 Design Patterns
Considering that the principle goal of our API is extensibility to
other dances, design patterns play an important role in ensuring that
our software design is problem-free. Design patterns are a common
approach in API design, making it popular among developers [14].
Software developers extending our system can refer the name of
the pattern they want to use and immediately understand how to
implement it. Creational patterns were used as they provide object
creation mechanisms that increase flexibility and reuse of existing
code. Structural patterns explain how to assemble objects and
classes into larger structures, while keeping the structures flexible
and efficient.

3.5.1 Factory Design Pattern
The Factory Method separates product construction code from the
code that actually uses the product. Therefore, it is easier to extend

the product construction code independently from the rest of the
code. This method provides low coupling and high cohesion of
elements which improves maintainability of the system. Factory
pattern provides abstraction between implementation and client
classes through inheritance. A Dance Style factory method was
created to reduce the code needed to construct components across
the framework into a single factory method. This allows methods
to be overridden in addition to extending the component itself. The
Dance Style class declares the factory method and returns new
product objects. The factory method is abstract to ensure all
subclasses implement their own version of the method. In this case
the Dance Style class allows users to create dance moves and
implement them according to the dance style chosen. In our case,
the Salsa class is a concrete class that overrides the factory method
to return a different type of dance. The DanceStyleFactory class
gets an instance of the dance style the user wants to implement and
returns the selected dance. The Dance Style and DanceStyleFactory
class can be seen in Figure 4 above.

3.5.2 Façade Design Pattern
Facade is a structural design pattern that provides a simplified
interface to a library, a framework, or any other complex set of
classes. Facade defines a simplified interface to a subsystem of
objects, but it doesn’t introduce any new functionality. The
subsystem itself is unaware of the facade. Objects within the
subsystem can communicate directly.
The constraints manager class is a facade class as it provides
functionality that is hidden from the rest of the code. It was used as
a way to isolate the code from the system in order to reduce the
complexity and improve readability of the subsystems by masking
interaction with more complex components. This class is
responsible for validating a sequence of moves against a set of
constraints to ensure that the particular sequence can be performed
in the chosen order. Once this operation is performed, the facade
class will direct the client code to the associated subsystem object
that will require this functionality. In this case, once a sequence is
validated, it will link back to the Sequence class subsystem to
perform the remaining operations. This process is illustrated in
Figure 4.

4. SYSTEMS DEVELOPMENT AND
IMPLEMENTATION
The implementation of the system follows the system architecture
structure created in the Design section in Figure 2. We ensured that
it adhered to the requirements analysis and stakeholder
requirements developed in the earlier stages of our life cycle.

4.1 Methodology
Following the design, the structure of the API was evaluated in
order to measure optimal usability with a variety of user-centred
methods. Our API design structure followed heuristic evaluation
guidelines [13] to ensure good design principles were met. The
names of variables, methods and classes were made as general as
possible to ensure easy interpretation by users. Additionally, we
ensured that all parts of the design were consistent throughout the
development of the API. An aesthetic and minimal design was
adopted to ensure successful usability and learnability. To ensure
that the API answers all research questions thoroughly and meets
all requirements, we divided the evaluation into two parts. First, we
evaluated the extensibility of the API by testing it with other dance

styles. Secondly, we conducted rigorous in-house testing with
developers to evaluate the learnability and understandability of the
API.

4.2. System Testing Method
To evaluate our tool, we will follow an evaluation criterion to
ensure that the system components are efficient and effective. In
order to prove that the software built was suitable to release to other
developers, it was crucial to ensure that it was tested thoroughly to
prove that the required functionality was produced. Several
software tests were performed to determine whether our system met
the initial requirements and if it is successful in its approach. The
evaluation method process is described in detail below.
We first tested whether our API could successfully carry out its core
purpose of computerising dance notation for the Salsa On1 and
SalsaOn2 dance styles based on the Salsa Dictionary. We tested this
using Figure 1 which represents a Cross Body Lead move in the
Dictionary. To test the API’s functionality, we input the data
described in the table into our system and determine whether the
output of the API matches the data in the table. The test is discussed
in more detail in section 5.
In order to prove extensibility of our API, software testing occurred
to determine whether the system can accommodate the plugin of
other dance styles. Tests were conducted against two dance styles
relating to Salsa in the sense of an 8 beat count and partner work.
Bachata is a dance style similar to Salsa, as shown in Table 2, as it
consists of a 2 bar 4-beat count. It is also a partnered dance with
open, closed and semi-closed positions, mapping directly to the
design of our Salsa dictionary notation. Bachata differs from Salsa
in terms of hip movement and a slower pace in rhythm which does
not have an effect on the computerization of this dance as hip
movement has a standard motion. In order to computerize Bachata
dance notation, the coder would follow an approach similar to the
SalsaOn1 and SalsaOn2 implementation. The number of elements
and lines of dance would remain the same as Salsa, with obvious
changes in the nomenclature.
The Cha-Cha-Cha is an Afro-Latin dance style performed as a
partnered dance with both open and closed embrace similar to
Salsa. It is counted with a 4/4 time as well and is characterised by
quick spins and strong torso movement. In order to implement this
variation of a partnered dance, we need to store the data associated
with a particular move and test it in our system. Results of this test
is discussed in Section 5.

Table 2: Comparison of attributes in partner-based dances

 Salsa
On1

Bachata Cha-Cha-
Cha

Music 4/4
timing

4/4
timing

4/4 timing

Basic
Footwork

1,2,3;
5,6,7;

1,2,3;
tap;5,6,7;
tap

1,2,3;cha-
cha;4,5,6;cha-
cha;

Style Quick,
Quick,
Slow.
Partner
dance.

Relaxed
and slow
partner
work.

Three quick
steps with two
slower beats
done on the
one beat and
the two beats.

4.3 Software Quality Testing
Rigorous implementation procedures testing was conducted in
phases in order to evaluate our software usability and learnability.
We have opted to conduct usability tests for qualitative research
purposes. We consulted with fellow engineers through an iterative
process, requiring them to examine, assess and test our code in
order to answer the research questions proposed in Section 1.

Phase 1: A Heuristic evaluation will take place as it can possibly
reveal problems in the API. We selected 16 heuristics based on API
design guidelines identified by Zabran [23] and used them to
categorise the problem areas occurring when evaluating our API.
Table 3 gives a short explanation of each heuristic based on [23]
we will be testing.

Table 3: Explanation of Heuristic Methods based on [23]

NAME EXPLANATION
Complexity Abstraction should be used. API

must not be too complex.

Naming Conventions Names should be used in a
consistent manner and must be
self-explanatory.

Correctness of Concept Ensure that elements are
modelled correctly to assist
programmers in using the API
correctly.

Factory Pattern Factory Pattern should only be
used when necessary.

Data Types Use correct data types suited to
the use of that data.

Implementation vs
Interface Dependency

Interface dependencies are
favoured as they are flexible in
their design.

Use of Attributes Ensure clear interaction among
attributes in order to achieve
specific functionality.

Method Parameters and
Return Type

The use of many parameters
should be avoided. Return type
must return the value of the given
method.

Consistency API design must be consistent
and obey conventions.

Readable Code API should be designed with the
programmer in mind to ensure
usability. Programmers must
understand what the parameters
mean in order to use it.

Phase 2: Once the developers had examined and were familiar with
the API code structure, we will then request a practical evaluation
to be done. The participants will be presented with 5 tasks involving

creating dance moves and sequences using the API features. An
outline of the tasks are as follows:

Task 1: Input dance elements for the SalsaOn1 dance style (8 beats)
and produce a dance line consisting of these elements.

Task 2: Create a dance move through the factory pattern method.

Task 3: Remove a dance move using the factory pattern method.

Task 4: Create a dance sequence based on the moves in the previous
task.

Phase 4: Once the tasks are completed, developers will answer a
series of questions based on their findings. Following guidelines on
measuring API usability, ten questions were asked based on the
assessments. The questions are as follows and classified by the
research question they target:

Questions regarding Understandability in Research Question 4:

1) Do you feel you had to keep track of information not presented
by the API to complete tasks?
2) Do you feel you had to learn several classes and methods in
order to complete a task?

Questions regarding Abstraction and Re-usability in Research
Question 3:

3) Do you identify the API abstraction level to be suitable to solve
the tasks?
4) Did you often need to adapt the API to meet your needs? e.g.
inheriting and overriding
5) In order to use the API, did you feel you had to understand the
underlying implementation?
6) Was it easy to assess your own progress/results while solving
the tasks?
7) Do you feel you had to choose only one way to solve the
required task?

Questions regarding Learnability in Research Question 2:

8) Was it easier to perform the remaining tasks once the first two
tasks were performed?
9) Does the code match your expectations to solve the required
tasks?

Phase 5: Discussion. We hope to gather quality feedback from the
evaluation in order to identify usability issues, if any. The outcome
of the methodology will potentially provide us with
recommendations for improving the API. Feedback is essential to
ensure that we answer all the research questions formulated at the
interim of the project.

5. RESULTS AND DISCUSSION
In this section, we will present and discuss the results of the in-
depth analysis of the extensibility of our API and the
implementation procedures testing conducted. Each phase of the
testing is presented in subsections corresponding to the research
questions in Section 1. For each question, we will critically

Micara Marajh

examine, summarize and discuss the results of the Systems Testing
and Software Quality Testing in this section.

5.1 API Extensibility
Following the implementation from our system testing in the
previous section, results from the tests are discussed in this section.
In order to computerize the move, we first input the elements to
create a line. We specified the name and symbol associated with
that element in order to prevent ambiguity in the understanding the
symbols. Each line is associated with a name which defines the
main gestures in Salsa. Depending on the dance move, a line will
not necessarily have an element associated with it. In order to create
a Salsa, move, an arraylist of line objects was constructed based on
the input. The adjustable size of the arraylist caters for the different
dance style elements as shown in the Line class in Figure 4. Once
a move is defined, a sequence of moves is then constructed from an
array list of move objects. The sequence is first validated in the
constraint’s manager class and thereafter a sequence is constructed.
Once we have input the elements and created lines, we were able to
successfully store a Cross Body Lead move as shown in Figure 6
that mapped directly to the table in the Salsa Dictionary. Test cases
were used to test that all requirements specified at the start of the
project was met. A test was executed with every class in the system
to verify compliance for each requirement (Appendix C). All test
case resulted in a pass. Hence, we can conclude that we have
successfully computerized a paper-based dance notation for the
SalsaOn1and SalsaOn2 dance style.

Handhold N N
Direction ML LM
Leader

Common Action XBL

Follower

Figure 6: Cross Body Lead Move representation

In order to prove our claim of extensibility, we attempted to
computerise an intermediate dance move in Bachata called the
Hammerlock based on our Salsa Dictionary approach in Figure 1.
The dancers hold each other with both hands with the leader or
follower having one arm bent behind them, while holding the hand
of the partner. Due to the congruency of Bachata and Salsa, we
were able to maintain the same structure in our coding technique.
Data was input in the same fashion as with Salsa however element
symbols and names changed according to Bachata. For the
hammerlock move in Bachata, the leader and follower perform
moves independent of each other with no common action
performed. Hence the common action line will have no elements
associated with it. Test cases were presented (Appendix C) to
shows the successful implementation of the Bachata dance style
based on the Salsa dictionary. Figure 7 shows the YAML
configuration file that stores the Bachata moves that we
implemented. Appendix B describes the YAML file specification
for storing a move.

Figure 7: YAML configuration file to store Bachata
Hammerlock move

To prove further extensibility, attempt was made to implement a
full bronze move in Cha-Cha-Cha. Fan is an open position,
whereby leader and follower are positioned facing each other
starting with the man on the left and the lady on the right as shown
in the Direction line in Figure 8. To perform the Fan position, the
man leads the lady to his left side during the second half of the bar
in a closed basic movement as seen in the latter 4 beats in Figure 8.
He leads this by turning the lady to her left, releasing his right hand
from her back and then extending the arm to the side. The
computerization of Cha-Cha-Cha in this case differs from Salsa in
terms of the move performed. Leader and follow perform steps
independent of each other. Figure 9 represents the YAML file
storing the data for the Fan move.

Handhold C C
Direction ML LM
Leader

F

Follower F

Figure 8: Fan move representation for Cha-Cha-Cha

YAML Template for Bachata Hammerlock move
lineArrayList:
 -name: "Handhold"
 elementstArray:
 -name: "Normal Hold"
 symbol: "N"
 -name: "Normal Hold"
 symbol: "N"
 -name: "Direction"
 elementsArray:
 -name: "Man facing Lady"
 symbol: "ML"
 -name: "Man facing Lady"
 symbol: "ML"
 -name: "Leader"
 elementsArray:
 -name: "Hammerlock"
 symbol: "HL"
 -name: "Follower"
 elementsArray:
 -name: "Hammerlock"
 symbol: "HL"

Figure 9: YAML configuration file storing Cha-Cha-Cha Fan
move

5.2 Software Usability Testing
5.2.1 Heuristic Evaluation
The developers identified a total of 24 usability problem instances
over the 10 different types of heuristic methods. The most
significant problems were regarding complexity of the API and the
method parameters. Unnecessary complexity was discovered, and
suggestions included removing some methods to reduce the
complexity of the API such as the remove sequence method which
was not needed. Unnecessary parameters were used in some
methods particularly the Element class such as Element style and
Element ID. These were advised to be removed as it caused
confusion and was not used in the creation of a move. The Heuristic
evaluation aimed at exploring all parts of API uniformly. Due to
inspection-like methodology, the developers could only evaluate
definition of classes, methods, interfaces etc, but were not able to
analyse run-time behaviour. Hence further evaluation was
conducted in Phase 2.

5.2.2 API Effectiveness and Accuracy
The collected material provided us with insights into understanding
problems of the presentation and the tutorial as well as usability
problems of the API. During the whole workshop 17 usability
relevant issues with the API have been identified. Based on these
tasks we found that the effort required to understand the semantics
of API features was considered overall moderate, but a few method
names were found confusing and potentially misleading. The
method get Lines is used to get a dance move. Developers labelled
this as misleading as get Move would have been the more
appropriate name. It was also discovered that 5 out of the 12
participants were unfamiliar with the use of the factory pattern
method. Since it is still possible to instantiate criteria without using
the corresponding factory, all participants could successfully
complete Tasks 2 and 3 even if they had problems with using

factories. Figure 11 compares the results of the Heuristic evaluation
to the results found when developers carried out tasks.

Figure 10: Comparison of Usability issues based on Heuristic
evaluation versus usability findings on given tasks

5.2.3 System usability questionnaire
All the developers, who participated in the task assignment, took
part in the interviews. The answers to these questions were critical
in understanding whether we had successfully answered our
research questions. Each question discussed participants findings
in previous sections. Figure 11 classifies answers to each interview
question into “yes”, “no”, and “sometimes”, giving the number of
responses in the form of a percentage. This provided a way for us
to determine the success of the quality of our API developed.

5.2.3.1 Understandability
The 42% of the developers that voted that they had to learn several
methods before completing a task were those that were unfamiliar
with the factory design pattern in question 2. However, task
completion was still possible without that knowledge. The
remainder found the classes to be acceptable for the required goal.

5.2.3.2 Abstraction
The abstraction level of the API was largely considered appropriate
and the functionalities were found suitable to solve the tasks.
However, 33% of developers occasionally found it useful to peek
at some implementation details in order to more readily understand
relations between classes in question 5. This was due to them not
having background knowledge on dance. The majority also found
the API abstraction level appropriate to the tasks.

5.2.3.3. Reusability
The developers agreed that they managed to write concise code in
an incremental fashion, and that their solutions were reusable to
solve variants of the problems. They also agreed that the API offers
different ways of implementing certain functionalities. Over 80%
of developers positively answered question 6.

5.2.3.4. Learnability
The learning curve for the API is initially steep, as it requires to
become familiar with a few non-trivial abstractions. After the initial
learning phase, however, solving more advanced tasks becomes
relatively simpler, as the developers got comfortable with the code.
Over 90% of the participants agreed that they became more
efficient after completing the first two “exploratory” tasks. This

YAML Template for Cha-Cha-Cha Fan move
lineArrayList:
 -name: "Handhold"
 elementstArray:
 -name: "Closed Hold"
 symbol: "C"
 -name: "Closed Hold"
 symbol: "C"
 -name: "Direction"
 elementsArray:
 -name: "Man facing Lady"
 symbol: "ML"
 -name: "Lady facing Man"
 symbol: "LM"
 -name: "Leader"
 elementsArray:
 -name: "Fan"
 symbol: "F"
 -name: "Follower"
 elementsArray:
 -name: "Fan"
 symbol: "F"

rigorous in-house testing approach allowed us to gain valuable
insights into the biggest problems that the developers struggled
with. These problems are the most crucial to be corrected as they
represent obstacles, which the developer has to overcome during
the very first use. Such obstacles can then easily discourage a
novice developer from using our framework. The evaluation
revealed a total of 17 unique usability problems in our API.

Figure 11: Summary of Interview Answers based on Research
Questions

The approach and their findings differed for each part of the
methodology. The findings from heuristic evaluation and findings
from the tasks focus on usability problems regarding concept and
structure of the API are detailed descriptions of problems in the API
shown in Figure 10. During the task phase we could reveal more
run-time problems that are not obvious and thus cannot be found in
the heuristic evaluation. Interviews not only provided deeper
understanding of these problems, but also revealed their attitude
towards our final product as shown in Figure 11.

6. CONCLUSIONS
The API tool that we have developed in this study is driven by a
novel approach to computerizing Salsa and various partner-based
dance routines. Previous literature provided evidence that there was
no uptake to computerizing paper-based notations for Salsa. The
API was designed in an abstract manner to cater for extensibility to
different dance styles. To assess the extensibility of the API we
tested it across various dance styles concluding that our API can be
used to extend other dances provided that the dance follows a 4-
beat pattern. To ensure that meticulous attention to detail was paid
to the design of our API, we conducted internal testing with
developers. We evaluated the learnability and understandability of
the API by comparing the expectations of programmers for our API
to their actual performance using programming tasks. Through
rigorous evaluation and testing we have proven our API framework
to be abstract, learnable and reusable. Thus, creating a solid
foundation for programmers to extend upon in the future.

7. FUTURE WORK
Due to the lack of tools developed to implement paper-based
notations to teach dance, a greater scope is provided for future
extensions to our work. Time restrictions in this project prevented

us from implementing certain features, making future work more
evident.
There are several other design patterns commonly used in APIs that
we were unable to implement in the given time. These can be
researched to improve flexibility and communication between
objects in the API. Further studies can examine the best design
patterns suited to implement to improve usability of the API. Ten
Heuristic techniques were performed in the evaluation of our
software quality. In the future, the remaining heuristics, can be used
to obtain more valuable feedback on the API design. API’s that are
flagged as highly usable are more often chosen to be used by
developers.
Since the API is flexible and abstract in its design, it provides a
basis for developers to extend upon by allowing them to implement
other dances. If time permitted, minor modifications would have
been made to the code to implement dances that contain any
number of beats and not being restricted to multiples of a 4-beat
count.
Our dance notation can also be extended from modelling dance
gestures to modelling human body movement in other cultural
activities. The underlying structure of our code allows for easy
modification into other forms of human movement. Activities such
as sport can be represented with our notation by defining the core
parts of the body used as a line and the elements relate to the action
performed in a line. For example, in boxing, a line would be hand
position of a boxer and elements would be the orientation of the
hand depending on the type of boxing move performed. This could
be a potential tool to provide a different approach to the way sport
is taught.
Implementation of the suggestions mentioned above would play a
significant role in encouraging the preservation of not only dance,
but other intangible cultural activities in the future whilst also
benefitting the members in these industries.

ACKNOWLEDGMENTS
An undertaking of this sort would not have been achievable without
the support of those around me.
Foremost, I would like to convey my sincere gratitude to my
supervisor Maria Keet for her ongoing support and patience
throughout this project, and Angus Prince for his valuable
contribution towards this project. My sincere thanks also go to my
colleagues Alka Baijnath and Jordy Chetty, both of whom have
supported and motivated me, making this an enjoyable experience.
Finally, I would like to offer my heartfelt appreciation to my
family: My parents, Shashi and Anupa Marajh who have been my
continuous source of support, advice and encouragement.

REFERENCES
[1] Alpert, P.T. 2011.The Health Benefits of Dance. Home Health Care Management

& Practice.DOI= https://doi.org/ 10.1177/1084822310384689.
[2] Bernstein, N. (1967) The co-ordination and regulation of movement. London:

Pergamon Press
[3] Bloch, J. Effective Java Programming Language Guide, Addison-Wesley,

Boston, MA, 2001.
[4] Bosse, J. 2008. Salsa Dance and the Transformation of Style: An Ethnographic

Study of Movement and Meaning in a Cross-Cultural Context. Dance Research
Journal, 40(1), 45-64. DOI=10.1017/S0149767700001364.

[5] Choensawat, W., Nakamura, M. and Hachimura, K. (2014). GenLaban: A tool
for generating Labanotation from motion capture data. Multimedia Tools and
Applications, 74(23), pp. 10823-10846.

[6] Christine von Renesse and Volker Ecke. 2011. Mathematics and Salsa dancing.
https://doi.org/10.1080/17513472.2010.491781

 [7] Colla J. Mac Donald. (1991). Creative Dance in Elementary Schools: A
Theoretical and Practical Justification. Canadian Journal of Education / Revue
Canadienne De L'éducation, 16(4), 434-441. doi:10.2307/1495255

 [8] DonHerbison-Evans. 1988.Dance, Video, NotationandComputers.Leonardo21,
1 (1988), 45–50. http://www.jstor.org/stable/1578415.

 [9] Gough, Matthew. (2004). Notation Reloaded: eXtensible Dance Scripting
Notation. Body, Space & Technology.

[10] Gough, Matthew. (2005). Towards Computer Generated Choreography:
Epikinetic Composition.

[11] Hutchinson Guest, A (1989) Choreographics: A Comparison of Dance Notation
Systems from the Fifteenth Century to the Present. Routledge London and New
York.

[12] Hatol, J. (2006). MOVEMENTXML: A representation of semantics of human
movement based on Labanotation (Doctoral dissertation, School of Interactive
Arts and Technology-Simon Fraser University.

[13] Jakob Nielsen and Rolf Molich. (1990). Heuristic evaluation of user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems.

[14] Joshua Bloch. (2006). How to design a good API and why it matters. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications (OOPSLA '06). ACM, New
York, NY, USA, 506-507. DOI: https://doi.org/10.1145/1176617.1176622

[15] Katerina El Raheb, Aristotelis Kasomoulis, Akrivi Katifori, Marianna Rezkalla,
and Yannis Ioannidis. (2018). A Web- based system for annotation of dance
multimodal recordings by dance practitioners and experts.

[16] Kelmendi, T. (2017). Analiza Dhe Krahasimi I Modelit Waterfall Me Modele Të
Tjera Për Zhvillimin E Sistemeve (Analysis and Comparison of Waterfall Model
with Other Models for Software/System Development). SSRN Electronic
Journal.

 [17] LarsWilke, ThomasW.Calvert, RhondaRyman, andIleneFox. (2005).Fromdance
notation to human animation: The LabanDancer project. Journal of Visualization
and Computer Animation 16 (2005), 201–211.

[18] Leijen, Ä., Lam, I., Wildschut, L., Simons, P.R.J. (2009). Difficulties teachers
report about students’ reflection: Lessons learned from dance education.
Teaching in Higher Education, 14(3), 315 - 326.

[19] Nakamura, Minako. (2019). An XML Representation of Labanotation,
LabanXML, and its Implementation on the Notation Editor LabanEditor2.

[20] Nakata, T (2002) Generation of whole-body expressive movement based on
somatical theories: Proceedings of the second international workshop on
Epigemetic Robotics, pp.105-114.

[21] R. B. Watson, "Improving software API usability through text analysis: A case
study," (2009) IEEE International Professional Communication Conference,
Waikiki, HI, 2009, pp. 1-7. doi: 10.1109/IPCC.2009.5208679

[22] SalsaIsGood. (2001). A Dictionary for Salsa and Mambo moves. Retrieved April
24, 2019 from http://salsaisgood.com/dictionary/main_Salsa_Method.html

[23] Scaffidi, C. (2006). Why are APIs difficult to learn and use? Crossroads, 12(4),
pp.4-4.

[24] Singh, B. Beatty, J. and Ryman, R. (1983). A graphics editor for benesh
movement notation. Computer Graphics, 17(3), pp.51-62.

[25] Stylos, J., Clarke, S. and Myers, B. (2006) Comparing API Design Choices with
Usability Studies

[26] Sweet, J. and Royce, A. (1978). The Anthropology of Dance. Dance Research
Journal

[27] Victoria Watts (2015) Benesh Movement Notation and Labanotation: From
Inception to Establishment (1919–1977), Dance Chronicle, 38:3, 275-
304, DOI: 10.1080/01472526.2015.1085227

APPENDIX

A SYSTEM USE CASE DIAGRAM

Figure 3: Use Case Diagram representing the final Salsa dance
system.

B CONFIGURATION FILE
A YAML file is a human-readable data serialisation file used for
configuration purposes. It is a description file used to store data
from the system. It is used as an expressive, extensive and portable
description file between programming languages. It defines key-
value variables for every item. For example, the Move file is
specified as follows:

• lineArrayList:
 -name: specifies the name of the Line
 elementstArray: an array of Element objects
 -name: specifies the name of the Element
 symbol: the symbol used to denote the dance
step
These are defined for an Element object. The scope is defined with
indentation within the YAML file. This allows the user to specify
values that she wishes to derive from the file. When all values are
defined, the system retries the elements defined above. When a file
is loaded, the system searches for the related file and retrieves the
values defined.

C TEST CASES

Figure 12: Test Case for Salsa Cross Body Move

Figure 13: Test Case Bachata Hammerlock Move

Test Scenario Test Case Test Step Test Data Expected
Result

Actual Result Pass/Fail

Verify element
input

Check
correct
elements
entered

1. Enter
element
name

2. Enter
element
symbol

Name: Normal
Hold
Symbol: N

Element must
be entered
correctly

Element
correctly entered

Pass

Check Line
creation
functionality

Verify that
line class
consists of
elements

1. Enter line
name

2. Add
element
objects to
a line

Name:
Leader
Name: Normal
Hold
Symbol: N

Line must
consist of
elements
previously
defined

Line displays
elements with
corresponding
name

Pass

Test Move
creation
functionality

Verify that a
move
contains lines
populate with
elements

1. Return
method to
produce a
line

Name:
Leader
Name: Normal
Hold
Symbol: N
Name: Normal
Hold
Symbol: N

Move must
include Lines
with elements
associated

Move created
correctly

Pass

Test Sequence
Functionality

Verify that a
sequence
contains a
list of moves

1. Return
method to
produce
moves

All data stored in
YAML file for
moves

Sequence
must consists
of a list of
moves

Sequence created
correctly

Pass

Test Scenario Test Case Test Step Test Data Expected

Result
Actual Result Pass/Fail

Verify element
input

Check
correct
elements
entered

1. Enter
element
name

2. Enter
element
symbol

Name: Normal
Hold
Symbol: N

Element must
be entered
correctly

Element
correctly entered

Pass

Check Line
creation
functionality

Verify that
line class
consists of
elements

1. Enter line
name

2. Add
element
objects to
a line

Name:
Leader
Name: Normal
Hold
Symbol: N

Line must
consist of
elements
previously
defined

Line displays
elements with
corresponding
name

Pass

Test Move
creation
functionality

Verify that a
move
contains lines
populate with
elements

1. method to
produce a
line

Name:
Handhold
Element Name:
Closed Hold
Symbol: C
Element Name:
Closed Hold
Symbol: C
Name: Direction
Element Name:
Man facing Lady
Symbol: ML
Element Name:
Lady facing Man
Symbol: LM
Name:
Leader
Element Name:
Fan
Symbol: F
Name: Follower
Element Name:
Fan
Symbol: F

Move must
include Lines
with elements
associated

Move created
correctly

Pass

Test Sequence
Functionality

Verify that a
sequence
contains a
list of moves

1. Return
method to
produce
moves

All data stored in
YAML file in
Figure 9

Sequence
must consists
of a list of
moves

Sequence created
correctly

Pass

Test Scenario Test Case Test Step Test Data Expected
Result

Actual Result Pass/Fail

Verify element
input

Check
correct
elements
entered

1. Enter
element
name

2. Enter
element
symbol

Name: Normal
Hold
Symbol: N

Element must
be entered
correctly

Element
correctly entered

Pass

Check Line
creation
functionality

Verify that
line class
consists of
elements

1. Enter line
name

2. Add
element
objects to
a line

Name:
Leader
Name: Normal
Hold
Symbol: N

Line must
consist of
elements
previously
defined

Line displays
elements with
corresponding
name

Pass

Test Move
creation
functionality

Verify that a
move
contains lines
populate with
elements

1. Return
method to
produce a
line

Name:
Leader
Name: Normal
Hold
Symbol: N
Name: Normal
Hold
Symbol: N

Move must
include Lines
with elements
associated

Move created
correctly

Pass

Test Sequence
Functionality

Verify that a
sequence
contains a
list of moves

1. Return
method to
produce
moves

All data stored in
YAML file
Figure 8

Sequence
must consists
of a list of
moves

Sequence created
correctly

Pass

Test Scenario Test Case Test Step Test Data Expected

Result
Actual Result Pass/Fail

Verify element
input

Check
correct
elements
entered

1. Enter
element
name

2. Enter
element
symbol

Name: Normal
Hold
Symbol: N

Element must
be entered
correctly

Element
correctly entered

Pass

Check Line
creation
functionality

Verify that
line class
consists of
elements

1. Enter line
name

2. Add
element
objects to
a line

Name:
Leader
Name: Normal
Hold
Symbol: N

Line must
consist of
elements
previously
defined

Line displays
elements with
corresponding
name

Pass

Test Move
creation
functionality

Verify that a
move
contains lines
populate with
elements

1. method to
produce a
line

Name:
Handhold
Element Name:
"Normal Hold"
Symbol: "N"
Element Name:
"Normal Hold"
Symbol: "N"
Name: Direction
Element Name:
Man facing Lady
Symbol: ML
Element Name:
Man facing Lady
Symbol: ML
Name:
Leader
Element Name:
Hammerlock
Symbol: HL
Name: Follower
Element Name:
Hammerlock
Symbol: HL

Move must
include Lines
with elements
associated

Move created
correctly

Pass

Test Sequence
Functionality

Verify that a
sequence
contains a
list of moves

1. Return
method to
produce
moves

All data stored in
YAML file in
Figure 7

Sequence
must consists
of a list of
moves

Sequence created
correctly

Pass

Figure 14: Test Case for Cha-Cha-Cha Fan Move

Test Scenario Test Case Test Step Test Data Expected
Result

Actual Result Pass/Fail

Verify element
input

Check
correct
elements
entered

1. Enter
element
name

2. Enter
element
symbol

Name: Normal
Hold
Symbol: N

Element must
be entered
correctly

Element
correctly entered

Pass

Check Line
creation
functionality

Verify that
line class
consists of
elements

1. Enter line
name

2. Add
element
objects to
a line

Name:
Leader
Name: Normal
Hold
Symbol: N

Line must
consist of
elements
previously
defined

Line displays
elements with
corresponding
name

Pass

Test Move
creation
functionality

Verify that a
move
contains lines
populate with
elements

1. Return
method to
produce a
line

Name:
Leader
Name: Normal
Hold
Symbol: N
Name: Normal
Hold
Symbol: N

Move must
include Lines
with elements
associated

Move created
correctly

Pass

Test Sequence
Functionality

Verify that a
sequence
contains a
list of moves

1. Return
method to
produce
moves

All data stored in
YAML file
Figure 8

Sequence
must consists
of a list of
moves

Sequence created
correctly

Pass

Test Scenario Test Case Test Step Test Data Expected

Result
Actual Result Pass/Fail

Verify element
input

Check
correct
elements
entered

1. Enter
element
name

2. Enter
element
symbol

Name: Normal
Hold
Symbol: N

Element must
be entered
correctly

Element
correctly entered

Pass

Check Line
creation
functionality

Verify that
line class
consists of
elements

1. Enter line
name

2. Add
element
objects to
a line

Name:
Leader
Name: Normal
Hold
Symbol: N

Line must
consist of
elements
previously
defined

Line displays
elements with
corresponding
name

Pass

Test Move
creation
functionality

Verify that a
move
contains lines
populate with
elements

1. method to
produce a
line

Name:
Handhold
Element Name:
Closed Hold
Symbol: C
Element Name:
Closed Hold
Symbol: C
Name: Direction
Element Name:
Man facing Lady
Symbol: ML
Element Name:
Lady facing Man
Symbol: LM
Name:
Leader
Element Name:
Fan
Symbol: F
Name: Follower
Element Name:
Fan
Symbol: F

Move must
include Lines
with elements
associated

Move created
correctly

Pass

Test Sequence
Functionality

Verify that a
sequence
contains a
list of moves

1. Return
method to
produce
moves

All data stored in
YAML file in
Figure 9

Sequence
must consists
of a list of
moves

Sequence created
correctly

Pass

